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I N T R O D U C T I O N  

IN THIS note we consider the initiation of  natural convection 
in a fluid, induced by heat generation due to the exo- 
thermicity of  a zeroth-order surface reaction. The two prob- 
lems of  (I) initiation of  natural convection due to an adverse 
temperature gradient and (2) ignition/extinction of  a zeroth- 
order chemical reaction following Arrhenius kinetics have 
been investigated separately and extensively in the literature 
[1, 2]. There is one characteristic difference between these 
two problems. The onset o f  instability for natural convection 
is characterized by a critical disturbance with a finite non- 
zero wave number. In contrast, thermal ignition occurs 
through a disturbance with zero wave number. Consequently 
one observes spatial structures at the onset of instability for 
natural convection and none for ignition. The prime purpose 
of  this study is to examine the interaction of  these two insta- 
bilities in an effort to understand the formation and dis- 
appearance of  spatial structures. It also offers a possible 
mechanism using a continuum approach for the occurrence 
of  spatial structures on reacting surfaces [3, 4]. This problem 
is reminiscent of  the classical Benard problem with heat 
generation now being accomplished by the exothermicity of 
the chemical reaction. In this note we present preliminary 
results on the initiation of  natural convection in a quiescent 
fluid using a linear stability analysis o f  the governing non- 
linear equations. Exchange of  stabilities follows as a natural 
consequence. This ensures that the onset of  convection is 
time independent. 

MODEL A S S U M P T I O N S  A N D  GENERAL 
FEATURES 

The model we propose to analyze is based on the fo l lowing 
assumptions. 

(1) The catalyst is coated on the surface of  a slab which is 
of  finite vertical thickness, extending to infinity in the two 
horizontal directions (Fig. I). The bottom surface of  the slab 
is maintained at a constant temperature. The reactant fluid 
is of  finite thickness and its top surface is maintained at 
constant temperature. 

(2) The surface catalyst coating is the site for a zeroth- 
order reaction. No reaction occurs in the bulk of  the solid. 
This kind of  kinetics is observed in the high concentration 
regimes, where concentration variation is negligible and the 
concentration can be effectively considered a constant. 

The Boussinesq equations are used in the fluid phase [5] 
while the energy equation in the solid phase assumes constant 
properties. 

The boundary conditions are given in Fig. 1 and the inter- 
face condition, aside of  continuity in temperature, is 
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FIG. 1. Schematic diagram of  the model described in the text. 

The steady, quiescent, conduction solution gives rise to 0,¢ 
(the conduction interface temperature) as a solution of 

GO~c 
~5f(0,¢) = - - ~  - (e, - 0to) (2) 

where 

[ ' ]  ./'(01c) = exp - e:(0ic + 1) " (3) 

The subscript 'c' is used to denote the conduction solution, 
as here the heat transfer in the system occurs only through 
conduction. Equation (2) is similar to the equation describ- 
ing the effluent steady-state temperature of a CSTR (con- 
tinuous stirred tank reactor) supporting a zeroth-order re- 
action. This equation has a unique solution if and only if 
~3 t> ~. For ~ < ~ the equation has three solutions for some 
values of  P, where 

P = (G+f l+s , f l ) / r f l  

and 

Throughout the rest of  the note we set e~ = 0. The variation 
of  0~c with 6 as described by equation (2) is shown in Fig. 
2(a). Branches AB and CD are stable and BC is unstable [6]. 
Point B is called the ignition point and C the extinction point. 
We observe that this base state is valid for all Rayleigh 
numbers. For e, = 0, we can conclude from equation (2) that 
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NOMENCLATURE 
a wave number,  a: = a~ +a~ 
Bi,q equivalent Biot number.  

- 6 ( a f  ?O)lo= % + aa coth (aft) 
.q, G gravitational constant,  thermal conductivity 

ratio of  solid to fluid 
AH heat of  reaction 
k,, reaction rate constant  
K) thermal conductivity of  fluid 
L dimensional fluid depth 
PM modified pressure 
Pr Prandtl number,  v:~ 
R, E gas constant and energy of  

activation 
Ra Rayleigh number,  g:qL3T,./zqv 
L. V, W velocity components  in the x-, y-, 

_--directions of velocity vector v. 

Greek symbols 
:< thermal diffusivity ratio of  interface. 

p,Cp, L :/vKr 
:q. :q thermal expansion coefficient and thermal 

diffusivity of  fluid 
fl dimensionless depth of  solid 
6 heat of  reaction parameter, ( - A H ) k ~ , L  K,T: 
e,~. 2 top and bot tom plate temperature (reducedL 

( T i -  T2), T2 and RT2/E 
0 reduced dimensionless temperature, 

( T -  re) T ,  
v kinematic viscosity of  fluid 
p .  Ce, density and specific heat of  interface 
r time. 

Subscripts 
i, f, c interfiace, fluid and conduction states. 

0,~ must  ahvays be positive. The analog of the slope condition 
for stability gives the following inequality along the stable 
branches : 

G - 6 ~3,(o) f + I  ~ g -  =,,, > 0. 

Stability of  the conduction or quiescent state is considered 
by subjecting it to an infinitesimal disturbance in the depen- 
dent variables such as (U*, V*, W*, 0j~', 0") e". Linearization 
about the quiescent conduction state gives 

(D 2-a'-)~Of = -a ' -  RaOi~Of ~ (4) 

subject to 

( D : - a 2)OiJ- (0) = D(D : - a:)01 ~- (0) = (D - Bi~q)0):" (0) = 0 

(5) 

0{( l )  = (DZ-aZ)O[(1 )  = D(D2-a ' - )O~(1)  = 0. (6) 

Here 0~ = G: ( Z ) e  i'~ ~+",'' and D =- d/d'_. 
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FIG. 2(a). Variation of 01~ with 6. AB corresponds to low 
tempcrature steady state. C D corresponds to high temper- 

ature steady state. 

In the above we have set ,7 = 0 since we can show that it 
is real (exchange of stability) and treat Ra as an eigenvaluc. 
The min imum Ra for all values of a gives the critical con- 
dition for the onset of convection. Equations (4) (6) are 
derived in a manner  similar to Sparro,* et al. [7] 

DISCUSSION AND RESULTS 
The Boussinesq and the associated boundary conditions 

are nonlinear in more than one way. The t~o  important 
nonlinearities are the v 'V0r term in the energy equation 
(i.e. e0r,.'¢?r + v- V0f = (I/Pr)V'-00 and the exponential term 
in equation (1) which is a boundary condition. It is these 
nonlinearities that lead to bifurcation behavior and sub- 
sequent linearization helps in the calculation of these bi- 
furcation points. 

We observe that for a fixed 6 we may calculate a lower or 
upper value of  0~ (from Fig. 2(a)). This leads to a cor- 
responding value of  Bio,) (see Nomenclature) which is inserted 
in equation (5). Thus Ra is the eigenvalue parameter and the 
min imum Ra with respect to a is called Ra~. This is plotted 
in Fig. 2(b) as a function o ld .  

As an example, i f6 = 12000 and 0,  is on AB of Fig. 2(aL 
then Ra¢ is calculated and resides on A'B'  of  Fig. 2ib). To 
make this clear let us assume that (5 = 12000. Let Ru~ be 
the critical Ra corresponding to the upper value of 0~¢ and 
Rat,. be the critical value corresponding to the lo~er value 
of 0,c. If the operative value o f R a  = 200, then we must  have 
a stable conductive solution since we would be in Region 1 
of Fig. 2(b) and below the critical Rayleigh numbers (Rat) 
corresponding to the lower or upper values of  0,~. If 
Ra = 20000 we would be in a convective region (Region II) 
since Ra > Ra¢. If Ra = 2000. then we are in a zone where 
the Ra > Ract and yet Ra < Ra~:. 

We conjecture that Region III, on non-linear analysis, will 
lead to interesting dynamic behavior. This may well be true 
because departure from the high temperature steady state 
via convection may cause us to approach the low temperature 
steady state and remain there. For large perturbations it is 
possible to return to the high temperature convecting state. 
These conjectures cannot be verified with the simple linear- 
ized calculations presented here. However, our calcula- 
tions are important because they bring out  the peculiar 
bifurcation behavior in the first place. The generation of Fig. 
2(b) is thus the central part of  this note. 

The computat ion of  Ra t, the critical Ra, can be carried 
out by two methods. The first involves solving equation (51 
subject to equation (6), numerically. This can be done using 
the Frobenius method. The calculation involves minimizing 
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FIG. 2(b). Variation of  Ra~ with 6. Region I is a region of  
steady stable conduction. In Region I1 natural convection 
occurs. In Region II1 the high temperature steady state is 
unstable to convection but  for the low temperature steady 
state we have no convection. Here G = 1000.0, ~t = 0, 

~: = 0.2, rv = 1.0. C',  B' correspond to C, B of  Fig. 2(a). 
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FIG. 3. Calculation of  Ra¢ using Sparrow et al.'s re- 
suits. Curve A represents variation of "Bi~q' as a function 
of "a'. Curve B is from Sparrow et al.'s table. Here 
G=I0 .0 ,  6=4170.0,  e l = 0 ,  e2=0.08, 0~=0.0014, Ra~= 

0.1160× I0 v, a¢ = 3.061, Bi,q = 30.48. 

the eigenvalue Ra over all wave numbers  'a ' .  The min imum 
value of  Ra then is the critical Rayleigh number  Ra¢ and the 
corresponding wave number  ' a /  gives the wave number  of  
the most  unstable mode. 

In the second method we utilize the results of  Sparrow et 
al. [7]. The parameter Bicq can be viewed as an equivalent 
Biot number.  The calculation of  Bi~q as a function of  'a '  
needs only the knowledge of  the interface temperature at the 
conduction state. We can then use Sparrow et al.'s results to 
help us calculate the critical wave number  (a~) and critical 
Rayleigh number  (Rat), respectively. In their paper they 
present values of  Ramc (critical Ram where Ram = Ra 0i¢ ) and 
a¢ for various Biot numbers.  We can use these results 
to compute  our critical parameters. The method involves 
plotting their Biot number  as a function of  a~. Ram¢ is then 
a parameter along this curve (i.e. each point on this curve 
corresponds to a different Ramc). We can plot our Bieq as a 
function o f  "a" since the functional dependence is known 
explicitly. The intersection of  these two curves gives us the Ramc, 
a¢, Bi~q at critical conditions. In Fig. 3 we use this method 
and find the numerically calculated value of  Ra~: to be 1667.8 
and from the graph the prediction is 1667.1 for 0,~ = 0.0014. 
We can use this method provided the two curves intersect. 
When the curves do not  intersect, typically for sufficiently 
low G or 6 close to the ignition or extinction points the 
equivalent critical Bi may be negative and we may have to 
resort to our numerical calculations. For this purpose we 
have extended the calculations to negative values of  Bi,~. The 
results are presented in Table 1. Boundary, conditions (6) 
will change to reflect calculations for the case when the top 
surface is stress free. Using the slope condition for stability 
of  the conduction state we get a lower bound for Bicq. Along 
the stable conduction branches Bi~ ~ - I. 

We next consider the dependence o f  Ra¢ on 'G '  (thermal 
conductivity ratio = KJKr). We note that for sufficiently 
high values of  G, the Ra¢ on suitable renormalization equals 
1707 [1]. Here the equivalent critical Biot number  is very 
high and so we approximate Dirichlet boundary conditions 
very closely at the interface. Physically Dirichlet boundary 

conditions correspond to negligible resistance to heat trans- 
fer or high thermal conductivity. Increasing G has a sta- 
bilizing effect on the incidence of  convection and it raises 
Ra~. For intermediate values of  G, Sparrow et aL's [7] results 
may be used for comparing with our numerical calculations 
(Fig. 3). This corresponds to the case of  intermediate Blot 
numbers.  For low values of  G (i.e. insulating solid) the effec- 
tive Biot number  becomes negative and we have to calculate 
Ra¢ by a separate procedure. 

We note that the pure surface reaction problem with no 
convection is characterized at the critical points (hereafter 
designated as the pure ignition and extinction) by dis- 
turbances of  zero wave number  or infinite wavelength. This 
precludes the formation of spatial structures. The intro- 
duction o f  convection in the surface reaction induces spatial 
structures along the surface of  the catalyst since now the 
critical wave number  of  the disturbance is nonzero. As we 
move closer to the ignition and extinction points the critical 
wave number  moves to zero and Bi~ tends to - 1 .  The 

Table 1. Critical wave numbers  and Rayleigh numbers  for a 
horizontal layer of  fluid with Dirichlet conditions for tem- 

perature at the top 

Top surface rigid Top surface free 
Bi ac Ra,~c a¢ Ram 

0t  2.55 1295.7 2.21 816.7 
- 0 . 1  2.51 1280.8 2.18 805.5 
- 0 . 3  2.43 1246.3 2.11 779.4 
- 0 . 5  2.32 1203.4 2.01 746.6 
- 0 . 7  2.14 1146.3 1.85 702.3 
- 0 . 9  1.77 1056.8 1.51 630.8 
- 0 . 9 9  1.13 970.55 1.07 572.8 
- 0 . 9 9 8  0.79 949.43 0.53 535.6 
- 1.0~ 0.0 933.34 0.0 525.0 

t Compare  with Sparrow et al. [7]. 
++ Obtained from an asymptotic analysis. 
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limit a~ ~ O, Bi~q ~ - 1 satisfies the linearized equations v, ith 
0~. = ,4 ~( l - z) with ,4 L being any arbitrary constant.  

In conclusion, we have examined the onset of  natural 
con~vection induced by an exothermic surface reaction with 
the hope of  capturing the phenomena of  generation of  spatial 
thermal structures along the solid fluid interface. In so doing. 
we have revealed an interesting connection between the bi- 
furcation behavior of  a stirred tank reactor with an exo- 
thermic reaction and the bifurcation behavior o f  the classical 
Benard problem. 
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INTRODUCTION 

THE RADIAL capillary gap cell (RCGC) was originally 
developed by Beck and Guthke [I1. The R C GC  consists 
of  two or more circular parallel plates with the electrolyte 
entering the cell through a central inlet and flowing outward 
m the radial direction as shown in Fig. 1. This cell finds 
application in electro-organic syntheses where the electrolyte 
has low conductivity and the electrodes must  be placed close 
together to minimize ohmic resistance losses. The typical gap 
width for these cells range from 0.1 to 1 mm. The RCGCs 
are also used as coutometric cells for adsorption studies and 
coulometric metal detectors [2]. 

Dworak and Wendt [3] solved the convective diffusion 
equation for the mass transfer to the electrodes in an RCGC. 
A parabolic velocity profile was assumed which was true 
for creeping flow. Several other assumptions were made for 
convenient mathematical  treatment which limited the utility 
of  the work to the symmetric Graetz problem and for thin, 
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FIG. I. Schematic of  a radial capillary gap cell. 

non-interacting boundary layers. The local mass transfer 
coefficient was calculated using a Leveque type approxi- 
mation. Burgi et al. [2] analyzed the mass transfer for an 
RCGC electrochemical detector. Nondimensionalization 
was used to transform the convective diffusion equation for 
the RCGC into that of  the Graetz problem in rectangular 
ducts. Eigenvalues and eigenfunctions obtained by Brown 
[4] were then used to solve the problem of mass transfer 
in the electrochemical detector, with symmetric boundary 
conditions at the electrodes. 

The objective of  this work was to analyze the mass transfer 
in an RCGC with creeping flow for the asymmetric Graetz 
problem. Nondimensionalization was used to extend the 
solutions for the asymmetric Graetz problem in rectangular 
ducts developed by Edwards and Newman [5] to the RCGC. 
The variation of  the local Sherwood number,  as a function 
of Reynolds and Schmidt number, for various cases has been 
presented. The analysis was also extended to laminar flo~ 
with a non-parabolic velocity profile. 

MODEL STATEMENT 

The convective diffusion model for an RCGC has been 
discussed in detail by Dworak and Wendt [3] and Burgi et 
al. [2]. The convective diffusion equation for the RCGC, 
where radial diffusion is neglected, is given by 

g-C g':C 
v r = -  = D r =  (1) cr C-- - 

where for creeping flow 

"" = 8 ~ ; ;  - 

The model equation is nondimensionalized to the fol- 
lowing form : 

( 1 - ~ : ) ~ 0  ?:0._, (2) 
C¢_ C ~  - 


